How do you solve the right triangle ABC if a=32m, A=46?

1 Answer
May 6, 2018

C=90^circC=90

B=90^circ-46^circ=44^circ.B=9046=44.

b = a/tan A approx 30.902b=atanA30.902

c = a/sin A approx 44.485 c=asinA44.485

Explanation:

a=32a=32 m, A=46^circ. A=46. Let's say C=90^circC=90 so B=90^circ-46^circ=44^circ.B=9046=44.

This is almost an isosceles triangle but it's certainly a right triangle. We have

tan A = a/btanA=ab

b = a/tan A = 32/{tan 46^circ} approx 30.902b=atanA=32tan4630.902

sin A = a/c sinA=ac

c = a/sin A = 32/{sin 46^circ} approx 44.485 c=asinA=32sin4644.485