How do you solve the separable differential equation dydx=(cosx)eysinx?

1 Answer
Mar 10, 2017

The answer is y=ln(esinxC)

Explanation:

We need

eab=eaeb

Let's rewrite and simplify the equation

dydx=cosxeysinx

dydx=cosxeyesinx

dyey=cosxesinxdx

Integrating both sides

dyey=cosxesinxdx

dyey=ey

For the RHS, we perform a substitution

Let u=sinx, , du=cosxdx

cosxesinxdx=dueu

=eu

=esinx

Therefore,

ey=esinx+C

ey=esinxC

y=ln(esinxC)

y=ln(esinxC)