How do you solve the system 2a+b=3, 5a=15, a+b+c=-1 using matrices?

1 Answer
Oct 23, 2016

Please see the explanation for the procedure.

Explanation:

Write 5a = 15 into the first row of the augmented matrix:

[ (5, 0,0,|,15) ]

Add the row for 2a + b = 3:

[ (5, 0,0,|,15), (2, 1, 0,|,3) ]

Add the row for a + b + c = -1:

[ (5, 0,0,|,15), (2, 1, 0,|,3), (1,1,1,|,-1) ]

Divide the first row by 5:

[ (1, 0,0,|,3), (2, 1, 0,|,3), (1,1,1,|,-1) ]

Multiply the first row by -2 and then add to row 2:

[ (1, 0,0,|,3), (0, 1, 0,|,-3), (1,1,1,|,-1) ]

Subtract row 1 from the row 3:

[ (1, 0,0,|,3), (0, 1, 0,|,-3), (0,1,1,|,-4) ]

Subtract row 2 from row 3:

[ (1, 0,0,|,3), (0, 1, 0,|,-3), (0,0,1,|,-1) ]

a = 3, b = -3, c = -1

Check:

2(3) + -3 = 3
5(3) = 15
3 + -3 + -1 = -1

3 = 3
15 = 15
-1 = -1

This checks