How do you solve the system #2x^2+2y^2=15# and #x+2y=6#?
1 Answer
#x=0.72; y=2.64#
#x=1.68; y=2.16#
Explanation:
Given -
#2x^2+2y^2=15# -----------(1)
#x+2y=6# ---------------(2)
Solve equation (2) for
#x=6-2y#
Substitute
#2(6-2y)^2+2y^2=15#
#2(36-24y+4y^2)+2y^2=15#
#72-48y+8y^2+2y^2=15#
#10y^2-48y+72-15=0#
#10y^2-48y+57=0#
#y=(-b+-sqrt(b^2-(4xxaxxc)))/(2xxa#
#y=(-(-48)+-sqrt((-48)^2-(4xx10xx57)))/(2xx10#
#y=(48+-sqrt(2304-2280))/(2xx10#
#y=(48+-sqrt(24))/(2xx10)#
#y=(48+-4.9)/(20)#
#y=(48+4.9)/(20)=52.9/20=2.64#
#y=2.64#
#y=(48-4.9)/(20)=43.1/20=2.16#
#y=2.16#
Substitute
#x+2(2.64)=6#
#x+5.28=6#
#x=6-5.28=0.72#
#x=0.72#
Substitute
#x+2(2.16)=6#
#x+4.32=6#
#x=6-4.32=1.68#
#x=1.68#
#x,y# values are -
#x=0.72; y=2.64#
#x=1.68; y=2.16#