How do you solve the system #2x^2-4y=22# and #y=-2x+3#?

1 Answer
May 7, 2017

Substitute the right side of equation [2] for y in equation [1].
Solve the resulting quadratic for the two x values.
Use equation [2] to find the corresponding y values.

Explanation:

Given:
#2x^2-4y=22" [1]"#
#y=-2x+3" [2]"#

Substitute the right side of equation [2] for y in equation [1].

#2x^2-4(-2x+3)=22#

Solve the resulting quadratic for the two x values.

Use the distributive property:

#2x^2+8x-12=22#

Combine like terms:

#2x^2+8x-34=0#

Divide both sides by 2

#x^2+4x-17=0#

Use the quadratic formula:

#x = (-4+ sqrt(4^2-4(1)(-17)))/2# and #x = (-4- sqrt(4^2-4(1)(-17)))/2#

#x = -2+ sqrt(4+17)# and #x = -2- sqrt(4+17)#

#x = -2+ sqrt(21)# and #x = -2- sqrt(21)#

Use equation [2] to find the corresponding y values.

#y = -2(-2+ sqrt(21))+3# and #y = -2(-2- sqrt(21))+3#

#y = -1- 2sqrt(21)# and #y = -1+ 2sqrt(21)#

The two points are:

#(-2+ sqrt(21), -1- 2sqrt(21))# and #(-2- sqrt(21),-1+ 2sqrt(21))#