How do you solve the system 4r-4x+4t=-4, 4r+x-2t=5, and -3r-3x-4t=-16?

1 Answer
Feb 23, 2018

r=1, x=3 and t=1

Explanation:

Perform the Gauss Jordan elimination on the augmented matrix

A=((4,-4,4,|,-4),(4,1,-2,|,5),(-3,-3,-4,|,-16))

I have written the equations not in the sequence as in the question in order to get 1 as pivot.

Perform the folowing operations on the rows of the matrix

R1larr(R1)/4

A=((1,-1,1,|,-1),(4,1,-2,|,5),(-3,-3,-4,|,-16))

R2larrR1-4R2; R3larrR3+3R1

A=((1,-1,1,|,-1),(0,5,-6,|,9),(0,-6,-1,|,-19))

R2larrR2*6; R3larrR3*5

A=((1,-1,1,|,-1),(0,30,-36,|,54),(0,-30,-5,|,-95))

R3larrR3+R2

A=((1,-1,1,|,-1),(0,30,-36,|,54),(0,0,-41,|,-41))

R3larr(R3)/(-41)

A=((1,-1,1,|,-1),(0,30,-36,|,54),(0,0,1,|,1))

R1larrR1-R2; R2larrR2+36R3

A=((1,-1,0,|,-2),(0,30,0,|,90),(0,0,1,|,1))

R2larr(R2)/30

A=((1,-1,0,|,-2),(0,1,0,|,3),(0,0,1,|,1))

R1larrR1+R2

A=((1,0,0,|,1),(0,1,0,|,3),(0,0,1,|,1))

Thus, r=1, x=3 and t=1