Perform the Gauss Jordan elimination on the augmented matrix
A=((4,-4,4,|,-4),(4,1,-2,|,5),(-3,-3,-4,|,-16))
I have written the equations not in the sequence as in the question in order to get 1 as pivot.
Perform the folowing operations on the rows of the matrix
R1larr(R1)/4
A=((1,-1,1,|,-1),(4,1,-2,|,5),(-3,-3,-4,|,-16))
R2larrR1-4R2; R3larrR3+3R1
A=((1,-1,1,|,-1),(0,5,-6,|,9),(0,-6,-1,|,-19))
R2larrR2*6; R3larrR3*5
A=((1,-1,1,|,-1),(0,30,-36,|,54),(0,-30,-5,|,-95))
R3larrR3+R2
A=((1,-1,1,|,-1),(0,30,-36,|,54),(0,0,-41,|,-41))
R3larr(R3)/(-41)
A=((1,-1,1,|,-1),(0,30,-36,|,54),(0,0,1,|,1))
R1larrR1-R2; R2larrR2+36R3
A=((1,-1,0,|,-2),(0,30,0,|,90),(0,0,1,|,1))
R2larr(R2)/30
A=((1,-1,0,|,-2),(0,1,0,|,3),(0,0,1,|,1))
R1larrR1+R2
A=((1,0,0,|,1),(0,1,0,|,3),(0,0,1,|,1))
Thus, r=1, x=3 and t=1