How do you solve the system #-5 = -64a + 16b - 4c + d#, #-4 = -27a + 9b - 3c + d#, #-3 = -8a + 4b - 2c + d#, #4 = -a + b - c + d#?
2 Answers
Explanation:
Given:
#{ (-5 = -64a+16b-4c+d), (-4 = -27a+9b-3c+d), (-3 = -8a+4b-2c+d), (4 = -a+b-c+d) :}#
Consider the function:
#f(x) = ax^3+bx^2+cx+d#
Note that the given system of equations is equivalent to:
#{ (f(-4) = -5), (f(-3) = -4), (f(-2) = -3), (f(-1) = 4) :}#
Since the sampling points are at equal intervals of size
Start with the original values:
#color(blue)(-5), -4, -3, 4#
Write down the sequence of differences between successive terms:
#color(blue)(1), 1, 7#
Write down the sequence of differences between successive terms:
#color(blue)(0), 6#
Write down the sequence of differences between successive terms:
#color(blue)(6)#
Then we can write down a formula for
#f(x) = color(blue)(-5)/(0!)+color(blue)(1)/(1!)(x+4)+color(blue)(0)/(2!)(x+4)(x+3)+color(blue)(6)/(3!)(x+4)(x+3)(x+2)#
#color(white)(f(x)) = -5+x+4+x^3+9x^2+26x+24#
#color(white)(f(x)) = x^3+9x^2+27x+23#
So:
#{ (a=1), (b=9), (c=27), (d=23) :}#
Footnote
Note that:
#color(purple)(1/(0!))_(color(white)(1/1))# is a constant function taking the value#1# when#x = -4#
#color(purple)(1/(1!)(x+4))_(color(white)(1/1))# is a linear function taking the value#0# when#x = -4# and#1# when#x = -3#
#color(purple)(1/(2!)(x+4)(x+3))_(color(white)(1/1))# is a quadratic function taking the value#0# when#x = -4# or#x = -3# and the value#1# when#x = -2#
#color(purple)(1/(3!)(x+4)(x+3)(x+2))_(color(white)(1/1))# is a cubic function taking the value#0# when#x = -4# ,#x = -3# or#x = -2# and the value#1# when#x = -1#
So as we add suitable multiples of these functions in turn, we get a sequence of polynomials of increasing degree that match each of the sample points in turn. The suitable multiples are the differences we found.
Explanation:
Given:
#{ (-5 = -64a+16b-4c+d), (-4 = -27a+9b-3c+d), (-3 = -8a+4b-2c+d), (4 = -a+b-c+d) :}#
Write in matrix form:
#((-64, 16, -4, 1, -5),(-27, 9, -3, 1, -4),(-8, 4, -2, 1, -3),(-1, 1, -1, 1, 4))#
Perform some row operations to make the left hand side into a
Subtract
#((17, -11, 5, -2, 7),(-27, 9, -3, 1, -4),(-8, 4, -2, 1, -3),(-1, 1, -1, 1, 4))#
Add
#((17, -11, 5, -2, 7),(7, -13, 7, -3, 10),(-8, 4, -2, 1, -3),(-1, 1, -1, 1, 4))#
Add
#((1, -3, 1, 0, 1),(7, -13, 7, -3, 10),(-8, 4, -2, 1, -3),(-1, 1, -1, 1, 4))#
Add
#((1, -3, 1, 0, 1),(0, -12, 6, -2, 8),(-8, 4, -2, 1, -3),(-1, 1, -1, 1, 4))#
Add
#((1, -3, 1, 0, 1),(0, -12, 6, -2, 8),(0, -20, 6, 1, 5),(-1, 1, -1, 1, 4))#
Add
#((1, -3, 1, 0, 1),(0, -12, 6, -2, 8),(0, -20, 6, 1, 5),(0, -2, 0, 1, 5))#
Subtract
#((1, -3, 1, 0, 1),(0, -12, 6, -2, 8),(0, -8, 0, 3, -3),(0, -2, 0, 1, 5))#
Subtract
#((1, -3, 1, 0, 1),(0, -2, 6, -6, 6),(0, -8, 0, 3, -3),(0, -2, 0, 1, 5))#
Divide
#((1, -3, 1, 0, 1),(0, 1, -3, 3, -3),(0, -8, 0, 3, -3),(0, -2, 0, 1, 5))#
Subtract
#((1, -3, 1, 0, 1),(0, 1, -3, 3, -3),(0, 0, 0, -1, -23),(0, -2, 0, 1, 5))#
Add
#((1, -3, 1, 0, 1),(0, 1, -3, 3, -3),(0, 0, 0, -1, -23),(0, -2, 0, 0, -18))#
Multiply
#((1, -3, 1, 0, 1),(0, 1, -3, 3, -3),(0, 0, 0, 1, 23),(0, 1, 0, 0, 9))#
Permute rows
#((1, -3, 1, 0, 1),(0, 1, 0, 0, 9),(0, 1, -3, 3, -3),(0, 0, 0, 1, 23))#
Subtract
#((1, -3, 1, 0, 1),(0, 1, 0, 0, 9),(0, 0, -3, 3, -12),(0, 0, 0, 1, 23))#
Divide
#((1, -3, 1, 0, 1),(0, 1, 0, 0, 9),(0, 0, 1, -1, 4),(0, 0, 0, 1, 23))#
Add
#((1, -3, 1, 0, 1),(0, 1, 0, 0, 9),(0, 0, 1, 0, 27),(0, 0, 0, 1, 23))#
Add
#((1, 0, 0, 0, 1),(0, 1, 0, 0, 9),(0, 0, 1, 0, 27),(0, 0, 0, 1, 23))#
We can now read off
#{ (a=1), (b=9), (c=27), (d=23) :}#