How do you solve the system -5 = -64a + 16b - 4c + d−5=−64a+16b−4c+d, -4 = -27a + 9b - 3c + d−4=−27a+9b−3c+d, -3 = -8a + 4b - 2c + d−3=−8a+4b−2c+d, 4 = -a + b - c + d4=−a+b−c+d?
2 Answers
Explanation:
Given:
{ (-5 = -64a+16b-4c+d), (-4 = -27a+9b-3c+d), (-3 = -8a+4b-2c+d), (4 = -a+b-c+d) :}
Consider the function:
f(x) = ax^3+bx^2+cx+d
Note that the given system of equations is equivalent to:
{ (f(-4) = -5), (f(-3) = -4), (f(-2) = -3), (f(-1) = 4) :}
Since the sampling points are at equal intervals of size
Start with the original values:
color(blue)(-5), -4, -3, 4
Write down the sequence of differences between successive terms:
color(blue)(1), 1, 7
Write down the sequence of differences between successive terms:
color(blue)(0), 6
Write down the sequence of differences between successive terms:
color(blue)(6)
Then we can write down a formula for
f(x) = color(blue)(-5)/(0!)+color(blue)(1)/(1!)(x+4)+color(blue)(0)/(2!)(x+4)(x+3)+color(blue)(6)/(3!)(x+4)(x+3)(x+2)
color(white)(f(x)) = -5+x+4+x^3+9x^2+26x+24
color(white)(f(x)) = x^3+9x^2+27x+23
So:
{ (a=1), (b=9), (c=27), (d=23) :}
Footnote
Note that:
color(purple)(1/(0!))_(color(white)(1/1)) is a constant function taking the value1 whenx = -4
color(purple)(1/(1!)(x+4))_(color(white)(1/1)) is a linear function taking the value0 whenx = -4 and1 whenx = -3
color(purple)(1/(2!)(x+4)(x+3))_(color(white)(1/1)) is a quadratic function taking the value0 whenx = -4 orx = -3 and the value1 whenx = -2
color(purple)(1/(3!)(x+4)(x+3)(x+2))_(color(white)(1/1)) is a cubic function taking the value0 whenx = -4 ,x = -3 orx = -2 and the value1 whenx = -1
So as we add suitable multiples of these functions in turn, we get a sequence of polynomials of increasing degree that match each of the sample points in turn. The suitable multiples are the differences we found.
Explanation:
Given:
{ (-5 = -64a+16b-4c+d), (-4 = -27a+9b-3c+d), (-3 = -8a+4b-2c+d), (4 = -a+b-c+d) :}
Write in matrix form:
((-64, 16, -4, 1, -5),(-27, 9, -3, 1, -4),(-8, 4, -2, 1, -3),(-1, 1, -1, 1, 4))
Perform some row operations to make the left hand side into a
Subtract
((17, -11, 5, -2, 7),(-27, 9, -3, 1, -4),(-8, 4, -2, 1, -3),(-1, 1, -1, 1, 4))
Add
((17, -11, 5, -2, 7),(7, -13, 7, -3, 10),(-8, 4, -2, 1, -3),(-1, 1, -1, 1, 4))
Add
((1, -3, 1, 0, 1),(7, -13, 7, -3, 10),(-8, 4, -2, 1, -3),(-1, 1, -1, 1, 4))
Add
((1, -3, 1, 0, 1),(0, -12, 6, -2, 8),(-8, 4, -2, 1, -3),(-1, 1, -1, 1, 4))
Add
((1, -3, 1, 0, 1),(0, -12, 6, -2, 8),(0, -20, 6, 1, 5),(-1, 1, -1, 1, 4))
Add
((1, -3, 1, 0, 1),(0, -12, 6, -2, 8),(0, -20, 6, 1, 5),(0, -2, 0, 1, 5))
Subtract
((1, -3, 1, 0, 1),(0, -12, 6, -2, 8),(0, -8, 0, 3, -3),(0, -2, 0, 1, 5))
Subtract
((1, -3, 1, 0, 1),(0, -2, 6, -6, 6),(0, -8, 0, 3, -3),(0, -2, 0, 1, 5))
Divide
((1, -3, 1, 0, 1),(0, 1, -3, 3, -3),(0, -8, 0, 3, -3),(0, -2, 0, 1, 5))
Subtract
((1, -3, 1, 0, 1),(0, 1, -3, 3, -3),(0, 0, 0, -1, -23),(0, -2, 0, 1, 5))
Add
((1, -3, 1, 0, 1),(0, 1, -3, 3, -3),(0, 0, 0, -1, -23),(0, -2, 0, 0, -18))
Multiply
((1, -3, 1, 0, 1),(0, 1, -3, 3, -3),(0, 0, 0, 1, 23),(0, 1, 0, 0, 9))
Permute rows
((1, -3, 1, 0, 1),(0, 1, 0, 0, 9),(0, 1, -3, 3, -3),(0, 0, 0, 1, 23))
Subtract
((1, -3, 1, 0, 1),(0, 1, 0, 0, 9),(0, 0, -3, 3, -12),(0, 0, 0, 1, 23))
Divide
((1, -3, 1, 0, 1),(0, 1, 0, 0, 9),(0, 0, 1, -1, 4),(0, 0, 0, 1, 23))
Add
((1, -3, 1, 0, 1),(0, 1, 0, 0, 9),(0, 0, 1, 0, 27),(0, 0, 0, 1, 23))
Add
((1, 0, 0, 0, 1),(0, 1, 0, 0, 9),(0, 0, 1, 0, 27),(0, 0, 0, 1, 23))
We can now read off
{ (a=1), (b=9), (c=27), (d=23) :}