How do you solve the system 9x-6y=12, 4x+6y=-12 using matrix equation?

1 Answer
Feb 15, 2017

The answer is ((x),(y))=((0),(-2))

Explanation:

Let's rewrite the equation in matrix form

((9,-6),(4,6))((x),(y))=((12),(-12))

Let matrix A=((9,-6),(4,6))

We need to calculate A^-1, the inverse of matrix A

For a matrix to be invertible,

detA!=0

detA=|(9,-6),(4,6)|=9*6-(-6*4)

=54+24=78

As, detA!=0, the matrix is invertible

A^-1=1/78((6,6),(-4,9))

=((6/78,6/78),(-4/78,9/78))=((1/13,1/13),(-2/39,3/26))

Therefore,

((x),(y))=((1/13,1/13),(-2/39,3/26))*((12),(-12))

=((0),(-2))