How do you solve the system of equations 3x + y = 1363x+y=136 and x - 5y = - 40x5y=40?

1 Answer
Jan 19, 2017

3x+y=1363x+y=136
x-5y=-40x5y=40

=> x=40x=40 and y=16y=16

Explanation:

This system

3x+y=1363x+y=136
x-5y=-40x5y=40

to can also be written as

((3,1),(1,-5))((x),(y))=((136),(-40)) a matrix equation

and if a matrix is invertible it is true that

Avecx=veccb => vecx=A^(-1)vecb

To find the inverse A^(-1)

A=((a,b),(c,d)) => A^(-1)=1/(det(A))((d,-b),(-c,a))

In this case a=3, b=1, c=1, d=-5. Therefore

det(A)=ad-bc => det(A)=-15-1=-16

following the formula for A^(-1) we get

=> A^(-1)=((5/16,1/16),(1/16,-3/16))

=> ((x),(y))=((5/16,1/16),(1/16,-3/16))((136),(-40))

So we plug in and get

=> x=((5)(136)-40)/16=640/16=40

and

y=(136+120)/16=256/16=16