Step 1) Solve the first equation for #x#:
#x + 3y = 8#
#x + 3y - color(red)(3y) = 8 - color(red)(3y)#
#x + 0 = 8 - 3y#
#x = 8 - 3y#
Step 2) Substitute #8 - 3y# for #x# in the second equation and solve for #y#:
#2x - y = 9# becomes:
#2(8 - 3y) - y = 9#
#(2 * 8) - (2 * 3y) - y = 9#
#16 - 6y - y = 9#
#16 - 6y - 1y = 9#
#16 - 7y = 9#
#-color(red)(16) + 16 - 7y = -color(red)(16) + 9#
#0 - 7y = -7#
#-7y = -7#
#(-7y)/color(red)(-7) = (-7)/color(red)(-7)#
#(color(red)(cancel(color(black)(-7)))y)/cancel(color(red)(-7)) = 1#
#y = 1#
Step 3) Substitute #1# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:
#x = 8 - 3y# becomes:
#x = 8 - (3 * 1)#
#x = 8 - 3#
#x = 5#
The solution is: #x = 5# and #y = 1# or #(5, 1)#