How do you solve the system -x^2+y^2+10=0 and -3y^2+x+1=0?

1 Answer
Jul 18, 2016

{x = 1/6 (1 + sqrt[373]), y = -1/3 sqrt[1/2 (7 + sqrt[373])]} and
{x = 1/6 (1 + sqrt[373]), y = 1/3 sqrt[1/2 (7 + sqrt[373])]}

Explanation:

Suming both sides of

3(-x^2+y^2+10)=0 and
-3y^2+x+1=0

we obtain

-3x^2+x+31=0

solving for x

x=1/6 (1 pm sqrt[373])

but

y^2=(x+1)/3

so

y = pmsqrt((1+1/6 (1 + sqrt[373]))/3)

so the solutions are

{x = 1/6 (1 + sqrt[373]), y = -1/3 sqrt[1/2 (7 + sqrt[373])]} and
{x = 1/6 (1 + sqrt[373]), y = 1/3 sqrt[1/2 (7 + sqrt[373])]}