How do you solve the system x+3y-2z=8, 3x+2y-3z=15, and 4x+2y+3z=-1?

1 Answer
Jan 3, 2018

x=134/47, y=24/47 and z=-85/47

Explanation:

Perform the Gauss Jordan elimination on the augmented matrix

A=((1,3,-2,|,8),(3,2,-3,|,15),(4,2,3,|,-1))

I have written the equations not in the sequence as in the question in order to get 1 as pivot.

Perform the folowing operations on the rows of the matrix

R2larrR2-3R1 ; R3larrR3-4R1

A=((1,3,-2,|,8),(0,-7,3,|,-9),(0,-10,11,|,-25))

R2larrR2-R3

A=((1,3,-2,|,8),(0,3,-8,|,16),(0,-10,11,|,-25))

R1larrR1-R2

A=((1,0,6,|,-8),(0,3,-8,|,16),(0,-10,11,|,-25))

R2larr(R2)/3

A=((1,0,6,|,-8),(0,1,-8/3,|,16/3),(0,-10,11,|,-25))

R3larrR3+10R2

A=((1,0,6,|,-8),(0,1,-8/3,|,16/3),(0,0,-47/3,|,85/3))

R3larrR3*(-3)/47

A=((1,0,6,|,-8),(0,1,-8/3,|,16/3),(0,0,1,|,-85/47))

R1larrR1-6R3 ; R2larrR2+8/3R3

A=((1,0,0,|,134/47),(0,1,0,|,24/47),(0,0,1,|,-85/47))

Thus x=134/47, y=24/47 and z=-85/47