How do you solve the system y^2=x^2-9y2=x29 and 2y=x-32y=x3?

1 Answer
Apr 22, 2016

{x=±5,y=4}{x=±5,y=4}

Explanation:

y^2=x^2-9y2=x29
color(green)(y^2+9)=x^2" "(1)y2+9=x2 (1)

2y=x-32y=x3
2y+3=x2y+3=x
color(green)((2y+3)^2)=x^2" "(2)(2y+3)2=x2 (2)

color(green)(y^2+9=color(green)((2y+3)^2))y2+9=(2y+3)2

y^2+9=4y^2+12y+9y2+9=4y2+12y+9

4y^2-y^2+12y+9-9=04y2y2+12y+99=0

3y^2+12y=03y2+12y=0

cancel(3)cancel(y)^2=cancel(12)cancel(y)

y=4

"using (1)"

4^2+9=x^2

16+9=x^2

x^2=25

x=±5

{x=±5,y=4}