How do you solve this system of equations: #y= - 6x - 13 and 7x + 2y = - 16 #?
1 Answer
Dec 14, 2017
Explanation:
#y=-6x-13to(1)#
#7x+2y=-16to(2)#
#color(blue)"Substitute "y=-6x-13" into equation "(2)#
#rArr7x+2(-6x-13)=-16#
#rArr7x-12x-26=-16#
#rArr-5x-26=-16#
#"add 26 to both sides"#
#-5xcancel(-26)cancel(+26)=-16+26#
#rArr-5x=10#
#"divide both sides by "-5#
#(cancel(-5) x)/cancel(-5)=10/(-5)#
#rArrx=-2#
#color(blue)"substitute "" this value into equation "(1)#
#rArry=(-6xx-2)-13=12-13=-1#
#"the point of intersection "=(-2,-1)#
graph{(y+6x+13)(y+7/2x+8)((x+2)^2+(y+1)^2-0.04)=0 [-10, 10, -5, 5]}