How do you solve x-2y=2 and 3x-5y=9 using matrices?

1 Answer
Feb 3, 2017

x=8, y=3

Explanation:

Put the eqns in matrix form

x-2y=2
3x-5y=9

become

((1,-2),(3,-5))((x),(y))=((2),(9))

we therefore have

M((x),(y))=((2),(9))

by premultiplying both sides by M^(-1)

M^(-1)M((x),(y))=M^(-1)((2),(9))

I((x),(y))=M^(-1)((2),(9))

where I=((1,0),(0,1))

:.((x),(y))=M^(-1)((2),(9))

so we need to find the inverse of the matrix.

M=((1,-2),(3,-5))

for any 2xx2 mx

M=((a,b),(c,d))

M^(-1)=1/Delta((d,-b),(-c,a))" providing "DeltaM!=0

find its determinant

Delta M=|(1,-2),(3,-5)|

DeltaM=1xx-5-(3xx-2)=-5--6=1

because Delta M!=0 " the inverse exists"

:.M^(-1)=1/1((-5,2),(-3,1))=((-5,2),(-3,1))

so((x),(y))=M^(-1)((2),(9))=((-5,2),(-3,1))((2),(9))

((x),(y))=((-5xx2+2xx9),(-3xx2+1xx9))

((x),(y))=((-10+18),(-6+9))

((x),(y))=((-10+18),(-6+9))

((x),(y))=((8),(3))