How do you solve x + 2y + z = 6x+2y+z=6, 2x - y - z = 02xyz=0, and 3x + 2y +z = 103x+2y+z=10 using matrices?

2 Answers
Dec 17, 2017

x=2x=2
y=0y=0
z=4z=4

Explanation:

Given -

x+2y+z=6x+2y+z=6
2x-y-z=02xyz=0
3x+2y+z=103x+2y+z=10
Answer is developed from the template I created in Excel

enter image source here

Dec 17, 2017

x=2x=2, y=0y=0 and z=4z=4

Explanation:

Perform the Gauss Jordan elimination on the augmented matrix

A=((1,2,1,|,6),(2,-1,-1,|,0),(3,2,1,|,10))

I have written the equations not in the sequence as in the question in order to get 1 as pivot.

Perform the folowing operations on the rows of the matrix

R2larrR2-2R1 ; R3larrR3-3R1

A=((1,2,1,|,6),(0,-5,-3,|,-12),(0,-4,-2,|,-8))

R1larrR1-(R3)/2 ; R2larrR2-R3

A=((1,0,0,|,2),(0,-1,-1,|,-4),(0,-4,-2,|,-8))

R3larrR3-4R2

A=((1,0,0,|,2),(0,-1,-1,|,-4),(0,0,2,|,8))

R2larr(R2)/(-1) ; R3larr(R3)/2

A=((1,0,0,|,2),(0,1,1,|,4),(0,0,1,|,4))

R2larrR2-R3

A=((1,0,0,|,2),(0,1,0,|,0),(0,0,1,|,4))

Thus x=2, y=0 and z=4