We cannot do crossing over
We rewrite the equation
#(x)/(3-x)>(2)/(x+5)#
#(x)/(3-x)-(2)/(x+5)>0#
#(x(x+5)-2(3-x))/((3-x)(x+5))>0#
#(x^2+5x-6+2x)/((3-x)(x+5))=(x^2+7x-6)/((3-x)(x+5))#
Let #f(x)=(x^2+7x-6)/((3-x)(x+5))#
The roots of #x^2+7x-6# are
#x=(-7+-sqrt(49+4*6))/2#
#x=(-7+-sqrt73)/2#
#x_1=(-7+8.54)/2=0.77#
#x_2=(-7-8.54)/2=-7.77#
Now, we can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaaaa)##-oo##color(white)(aaaa)##-7.77##color(white)(aaaa)##-5##color(white)(aaaa)##0.77##color(white)(aaaa)##3##color(white)(aaaaa)##+oo#
#color(white)(aaaa)##x+7.77##color(white)(aaaaa)##-##color(white)(aaaaaa)##+##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaa)##+##color(white)(aa)###||###color(white)(aaa)##+#
#color(white)(aaaa)##x+5##color(white)(aaaaaaaa)##-##color(white)(aaaaaa)##-##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaa)##+##color(white)(aa)###||###color(white)(aaa)##+#
#color(white)(aaaa)##x-0.77##color(white)(aaaaaa)##-##color(white)(aaaaaa)##-##color(white)(aa)##||##color(white)(aa)##-##color(white)(aaa)##+##color(white)(aa)###||###color(white)(aaa)##+#
#color(white)(aaaa)##3-x##color(white)(aaaaaaaaa)##+##color(white)(aaaaaa)##+##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaa)##+##color(white)(aa)###||###color(white)(aaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaaa)##-##color(white)(aaaaaa)##+##color(white)(aa)##||##color(white)(aa)##-##color(white)(aaa)##+##color(white)(aa)###||###color(white)(aaa)##-#
Therefore,
#f(x)>0# when #x in ]-7.77, -5[uu ]0.77,3[#