How do you solve x+3y=11x+3y=11 and x+4y=14x+4y=14 using matrices?

2 Answers
Jul 12, 2016

x=2; y=3

Explanation:

you must solve by applying the basic propositions:

x=D_x/D; y=D_y/Dx=DxD;y=DyD

where D is the determinant of the matrix

|quad1quad3|
|quad1 quad 4|

Its determinant is obtained by:

D=1*4-3*1=1

D_x and D_y are respectively the determinants of the matrices

|quad11quad3|
|quad14quad4|

|quad1quad11|
|quad1quad14|

D_x=11*4-3*14=44-42=2

D_y=1*14-11*1=3

So

x=D_x/D=2/1=2

y=D_y/D=3/1=3

Jul 17, 2016

x=2" ; "y=3

Two methods given

Explanation:

color(blue)("Using Gauss Jordon elimination")

" "color(white)(.)xcolor(white)(.)ycolor(white)(.)"answer"
" "[[1,3,"|",11],[1,4,"|",14]]
" "Row2-Row1
" "darr

" "[[1,3,"|",11],[0,1,"|",3]]
" "Row1-3(Row2)
" "darr

" "[[1,0,"|",2],[0,1,"|",3]]" "larr [[x],[y]]
color(white)(.)

=>[[1,0],[0,1]] color(white)(.)[[x],[y]] = [[2],[3]]
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Using Linear Algebra")

A=[[1,3],[1,4]]
color(white)(.)

X=[[x],[y]]

B=[[11],[14]]

=>AX=B
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)("Consider the Algebra method of determining "x)
Given:" "3x=4

Divide both side by 3 -> 1/3xx3x=1/3xx4

We multiply the 3 by 3 inverse to turn the coefficient of x into 1

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(brown)("Using the Algebra method shown above")

Multiply both sides by A" inverse. written as "color(blue)(A^(-))

color(brown)(=>color(blue)(A^(-))AX" "=" "color(blue)(A^(-))B)

=>X=A^(-)B ...................................Equation(1)

Checked in Maple:
Tony B
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine "A^(-))

color(brown)("Method 1")

Write the original matrix as:

" "[[1,3,"|",1,0],[1,4,"|",0,1]]

And conduct a Gauss Jordon elimination on the LHS

" "Row2-Row1
" "darr

" "[[1,3,"|",1,0],[0,1,"|",-1,1]]
" "Row1-3(Row2)
" "darr

" "[[1,0,"|",4,-3],[0,1,"|",-1,1]] => A^(-)=[[4,-3],[-1,1]]
,.....................................................................................
color(brown)("Method 2 - Shortcut approach")

Multiply a modified version of [[1,3],[1,4]] by its inverted determinant.

For [[a,b],[c,d]] the determinant is ab-cd
and the modified matrix is [[d,-b],[-c,a]]

D=(1xx4)-(1xx3)=1

Thus A^(-)= 1xx[[4,-3],[-1,1]]
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Finish the calculation for Equation(1)")
=>X=A^(-)B ...................................Equation(1)

[[4,-3],[-1,1]] [[11],[14]] = [[2],[3]]