How do you solve x+4y-z =3, 2x+3y-2z =1 and -x+2y+3z =7 using matrices?

1 Answer
Feb 6, 2017

The answer is ((x),(y),(z))=((1),(1),(2))

Explanation:

We rewrite the equations with a matrix

((1,4,-1),(2,3,-2),(-1,2,3))((x),(y),(z))=((3),(1),(7))

Let matrix A=((1,4,-1),(2,3,-2),(-1,2,3))

We must calculate the inverse of A, A^-1

We calculate the determinant of A

detA=|(1,4,-1),(2,3,-2),(-1,2,3)|

=1*|(3,-2),(2,3)|-4*|(2,-2),(-1,3)|-1*|(2,3),(-1,2)|

=1*(13)-4(4)-1*(7)

=13-16-7=-10

detA!=0, so the matrix is invertible

The matrix of cofactor is

C=((|(3,-2),(2,3)|,-|(2,-2),(-1,3)|,|(2,3),(-1,2)|),(-|(4,-1),(2,3)|,|(1,-1),(-1,3)|,-|(1,4),(-1,2)|),(|(4,-1),(3,-2)|,-|(1,-1),(2,-2)|,|(1,4),(2,3)|))

=((13,-4,7),(-14,2,-6),(-5,0,-5))

We calculate the transpose of C

C^T=((13,-14,-5),(-4,2,0),(7,-6,-5))

A^-1=C^T/detA=-1/10((13,-14,-5),(-4,2,0),(7,-6,-5))

and

((x),(y),(z))=-1/10((13,-14,-5),(-4,2,0),(7,-6,-5))*((3),(1),(7))

=-1/10((-10), (-10),(-20))=((1),(1),(2))