How do you solve #(x+5)/(x-1)=7/6#?
1 Answer
Apr 23, 2018
Explanation:
#"we can use "color(blue)"cross-multiplication ""to solve"#
#"given one fraction equal to another fraction then"#
#•color(white)(x)a/b=c/drArrad=bclarrcolor(blue)"cross-multiplication"#
#(x+5)/(x-1)=7/6#
#rArr7(x-1)=6(x+5)larrcolor(blue)"distribute"#
#rArr7x-7=6x+30#
#"subtract 6x from both sides"#
#7x-6x-7=cancel(6x)cancel(-6x)+30#
#rArrx-7=30#
#"add 7 to both sides"#
#xcancel(-7)cancel(+7)=30+7#
#color(blue)"As a check"# Substitute this value into the left side of the equation and if equal to the right side then it is the solution.
#(37+5)/(37-1)=42/36=7/6=" right side"#
#rArrx=37" is the solution"#