First, line up the equations with one above the other:
#x+6y=28#
#2x-3y=-19#
next, multiply the ENTIRE bottom equation by 2:
#x+6y=28#
#color(red)(4)x-color(red)(6)y=color(red)(-38)#
Now, add the equations together:
#(x+6y=28)#
#ul(+(4x-6y=-38)#
#color(red)((4+1))x+color(red)((6-6))y=color(red)((28-38))#
#color(red)(5)x+color(red)(0)y=color(red)(-10)#
#5x=-10#
Now, solve for #x#:
#(cancel(5)x)/color(red)(cancel(5))=(-10)/color(red)(5)#
#color(blue)(x=-2)#
Since we now have a solution for #x#, we can plug it back into either equation to solve for #y#. Doing it in both proves that our solution for #x# is valid:
Equation 1:
#color(blue)(x)+6y=28#
#color(blue)(-2)+6y=28#
#color(blue)(cancel(-2))+6ycolor(red)(cancel(+2))=28color(red)(+2)#
#6y=30#
#(cancel(6)y)/color(red)(cancel(6))=30/color(red)(6)#
#color(green)(y=5)#
Equation 2:
#2color(blue)(x)-3y=-19#
#2color(blue)((-2))-3y=-19#
#-4-3y=-19#
#cancel(-4)-3ycolor(red)(cancel(+4))=-19color(red)(+4)#
#-3y=-15#
#(cancel(-3)y)/color(red)(cancel(-3))=(-15)/color(red)(-3)#
#color(green)(y=5)#
Both equations support the solution, we're done!