How do you solve (x-7)/(x-4)+(x+8)/(x-3)=(x+158)/(x^2-7x+12) and check for extraneous solutions?

1 Answer
Oct 11, 2016

x=(7+-sqrt1401)/4

Explanation:

As (x-4)(x-3)=x^2-7x+12 - note that as they are in denominator x!=3 and x!=4

(x-7)/(x-4)+(x+8)/(x-3)=(x+158)/(x^2-7x+12)

hArr((x-7)(x-3)+(x+8)(x-4))/(x^2-7x+12)=(x+158)/(x^2-7x+12)

or ((x-7)(x-3)+(x+8)(x-4))=(x+158)

or x^2-10x+21+x^2+4x-32=x+158

or 2x^2-6x-11-x-158=0

or 2x^2-7x-169=0

and using quadratic formula x=(-b+-sqrt(b^2-4ac))/(2a) as olution for quadratic equation ax^2+bx+c=0

x=(-(-7)+-sqrt((-7)^2-4*2^*(-169)))/4

= (7+-sqrt(49+1352))/4=(7+-sqrt1401)/4