Let #f(x)=x/(x-2)#
Build a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaaa)##0##color(white)(aaaaaaaa)##2##color(white)(aaaaaa)##+oo#
#color(white)(aaaa)##x##color(white)(aaaaaaaa)##-##color(white)(aaaa)##0##color(white)(aaaa)##+##color(white)(aaaaa)##+#
#color(white)(aaaa)##x-2##color(white)(aaaaa)##-##color(white)(aaaa)####color(white)(aaaaa)##-##color(white)(aa)##||##color(white)(aa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aaaa)##0##color(white)(aaaa)##-##color(white)(aa)##||##color(white)(aa)##+#
Therefore,
#f(x)>=0# when ##
graph{x/(x-2) [-10, 10, -5, 5]}