We cannot do crossing over.
We rearrange the equation
#x/(x-2)>9#
#x/(x-2)-9>0#
#(x-9(x-2))/(x-2)>0#
#(x-9x+18)/(x-2)>0#
#(18-8x)/(x-2)>0#
#(2(9-4x))/(x-2)>0#
Let #f(x)=(2(9-4x))/(x-2)#
The domain of #f(x)# is #D_f(x)=RR-{2}#
We can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaa)##2##color(white)(aaaaaaaa)##9/4##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x-2##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##9-4x##color(white)(aaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##+##color(white)(aaaa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aaaa)##+##color(white)(aaaa)##-#
Therefore,
#f(x)>0# when #x in ]2,9/4[#