How do you solve y² = x + 3 and x - 2y = 12?

3 Answers
Jun 10, 2018

If y=5, x=22
If y=3, x=6

Explanation:

y2=x+3 --- (1)
x2y=12 --- (2)

From (2)
x2y=12
x=12+2y --- (3)

Sub (3) into (1)
y2=12+2y+3
y2=15+2y
y22y15=0
(y5)(y+3)=0
y=5 or y=3

If y=5,
x=12+2y
x=12+10
x=22

If y=3,
x=12+2y
x=126
x=6

Jun 10, 2018

(6,3),(22,5)

Explanation:

y2=x+3(1)

x2y=12(2)

from equation (2)x=12+2y(3)

substitute x=12+2y in equation (1)

y2=12+2y+3

y22y15=0in standard form

(y5)(y+3)=0

y+3=0y=3

y5=0y=5

substitute these values into equation (3)

y=3x=126=6(6,3)

y=5x=12+10=22(22,5)

A graphical solution below:

Explanation:

Solving this graphically:

Here's one point of intersection:

graph{(y^2-x-3)(x-2y-12)=0}

And here's the other:

graph{(y^2-x-3)(x-2y-12)=0[10,30,0,10]}