How do you use FOIL to multiply #(2x-5)(3x+6)#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Nam D. May 25, 2018 #6x^2-3x-30# Explanation: Given: #(2x-5)(3x+6)#. #"FOIL"# states that for a product of #(a+b)(c+d)#, the answer is: #ac+ad+bc+bd#. So, here we get: #=2x*3x+2x*6-5*3x-5*6# #=6x^2+12x-15x-30# #=6x^2-3x-30# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 2289 views around the world You can reuse this answer Creative Commons License