How do you use half-angle identities to find the exact values of sin (u/2) & cos (u/2) when sin(u)= - 4/5 and 3pi/2 <u<2pi?

1 Answer
Jan 25, 2016

cos(u2)=255
sin(u2)=55

Explanation:

sinu=45 --> cos2u=1sin2u=11625=925
cosu=35 (cos u positive since u is in the Quadrant IV).
To find sin(u2) and cos(u2) apply the trig identities:
cos2a=2cos2a1
cos2a=12sin2a
a. Find cos(u2)
cosu=35=2cos2(u2)1
2cos2(u2)=1+35=85
cos2(u2)=810
cos(u2)=810=±8010=±4510=±255
cos(u2)=255 (cos(u2) negative, Quadrant II)
b. Find sin(u2)
35=12sin2(u2)
2sin2(u2)=135=25
sin2(u2)=210=15
sin(u2)=±15=±55
sin(u2)=55 (sin(u2) positive, Quadrant II)