2x^3=(3xy+1)^2.
Diff.ing both sides w.r.t. x,
d/dx(2x^3)=d/dx(3xy+1)^2.
Here, by the Chain Rule,
"The R.H.S.="d/dx(3xy+1)^2=2(3xy+1)d/dx(3xy+1)
=2(3xy+1){d/dx(3xy)+d/dx(1)}
=2(3xy+1){3d/dx(xy)+0}
=2(3xy+1)[3{xd/dx(y)+yd/dx(x)}]........"[Product Rule]"
=2(3xy+1){3(xdy/dx+y)}
=6(3xy+1)(xdy/dx+y).....................(1)
"The L.H.S.="d/dx(2x^3)=2*3x^2=6x^2...................(2)
From (1) and (2), we have,
cancel(6)x^2=cancel(6)(3xy+1)(xdy/dx+y)", i.e.,"
x^2=x(3xy+1)dy/dx+y(3xy+1)
:. {x^2-y(3xy+1)}/{x(3xy+1)}=dy/dx.
Enjoy Maths.!