How do you use implicit differentiation to find (dy)/(dx) given 2x^3=(3xy+1)^2?

1 Answer
Sep 27, 2016

dy/dx={x^2-y(3xy+1)}/{x(3xy+1)}.

Explanation:

2x^3=(3xy+1)^2.

Diff.ing both sides w.r.t. x,

d/dx(2x^3)=d/dx(3xy+1)^2.

Here, by the Chain Rule,

"The R.H.S.="d/dx(3xy+1)^2=2(3xy+1)d/dx(3xy+1)

=2(3xy+1){d/dx(3xy)+d/dx(1)}

=2(3xy+1){3d/dx(xy)+0}

=2(3xy+1)[3{xd/dx(y)+yd/dx(x)}]........"[Product Rule]"

=2(3xy+1){3(xdy/dx+y)}

=6(3xy+1)(xdy/dx+y).....................(1)

"The L.H.S.="d/dx(2x^3)=2*3x^2=6x^2...................(2)

From (1) and (2), we have,

cancel(6)x^2=cancel(6)(3xy+1)(xdy/dx+y)", i.e.,"

x^2=x(3xy+1)dy/dx+y(3xy+1)

:. {x^2-y(3xy+1)}/{x(3xy+1)}=dy/dx.

Enjoy Maths.!