How do you use implicit differentiation to find dy/dx given 2x-y+y^2=02x−y+y2=0?
1 Answer
Nov 13, 2016
dy/dx=(-2)/(2y-1)dydx=−22y−1
Explanation:
Given-
2x-y+y^2=02x−y+y2=0
2-dy/dx+2y*dy/dx=02−dydx+2y⋅dydx=0
-dy/dx+2y*dy/dx=-2−dydx+2y⋅dydx=−2
dy/dx(-1+2y)=-2dydx(−1+2y)=−2
dy/dx(2y-1)=-2dydx(2y−1)=−2
dy/dx=(-2)/(2y-1)dydx=−22y−1