How do you use implicit differentiation to find #(dy)/(dx)# given #3x^2y^2=4x^2-4xy#?
2 Answers
Aug 15, 2017
#dx/dy=(8x-4y-6xy^2)/(6x^2y + 4x)#
Explanation:
Given -
#3x^2y^2=4x^2-4xy#
#6xy^2+6x^2y.dx/dy=8x-4y+(-4x.dy/dx)#
#6xy^2+6x^2y.dx/dy=8x-4y-4x.dy/dx#
#6xy^2+6x^2y.dx/dy+4x.dy/dx=8x-4y#
#6x^2y.dx/dy+4x.dy/dx=8x-4y-6xy^2#
#(6x^2y + 4x)dx/dy=8x-4y-6xy^2#
#dx/dy=(8x-4y-6xy^2)/(6x^2y + 4x)#
Aug 15, 2017
Explanation:
Product and power rule:
Move all terms that include