Differentiation of the expression is determined by using the product rule differentiation
color(brown)(d/dx(u(x)+v(x))=d/dx(u(x))+d/dx(v(x)))ddx(u(x)+v(x))=ddx(u(x))+ddx(v(x))
color(red)(d/dx(u(x)xxv(x))ddx(u(x)×v(x))
color(red)(=(du(x))/dxxxv(x)+(dv(x))/dxxxu(x)=du(x)dx×v(x)+dv(x)dx×u(x)
Applying the differentiation of trigonometric functions
color(blue)(d/dx(sinx)=cosx)ddx(sinx)=cosx
color(blue)(d/dx(cosx)=-sinx)ddx(cosx)=−sinx
d/dx(xsiny+x^2cosy)=(d1)/dxddx(xsiny+x2cosy)=d1dx
rArrcolor(brown)(d/dx(xsiny)+d/dx(x^2cosy)=0)⇒ddx(xsiny)+ddx(x2cosy)=0
rArrcolor(red)(((dx)/dxxxsiny+(dsiny)/dxxxx)+((dx^2)/dxxxcosy+(dcosy)/dxxxx^2)=0⇒(dxdx×siny+dsinydx×x)+(dx2dx×cosy+dcosydx×x2)=0
rArrsiny+(dy/dx)(cosy)x+2xcosy-(dy)/dx(siny)x^2=0⇒siny+(dydx)(cosy)x+2xcosy−dydx(siny)x2=0
rArr(dy/dx)(cosy)x-(dy)/dx(siny)x^2=-siny-2xcosy⇒(dydx)(cosy)x−dydx(siny)x2=−siny−2xcosy
rArr(dy/dx)((cosy)x-(siny)x^2)=-siny-2xcosy⇒(dydx)((cosy)x−(siny)x2)=−siny−2xcosy
rArr(dy)/(dx)=-(siny+2xcosy)/((cosy)x-(siny)x^2)⇒dydx=−siny+2xcosy(cosy)x−(siny)x2