How do you use implicit differentiation to find dy/dx given xsiny+x^2cosy=1xsiny+x2cosy=1?

1 Answer
Oct 31, 2016

(dy)/(dx)=-(siny+2xcosy)/((cosy)x-(siny)x^2)dydx=siny+2xcosy(cosy)x(siny)x2

Explanation:

Differentiation of the expression is determined by using the product rule differentiation

color(brown)(d/dx(u(x)+v(x))=d/dx(u(x))+d/dx(v(x)))ddx(u(x)+v(x))=ddx(u(x))+ddx(v(x))

color(red)(d/dx(u(x)xxv(x))ddx(u(x)×v(x))
color(red)(=(du(x))/dxxxv(x)+(dv(x))/dxxxu(x)=du(x)dx×v(x)+dv(x)dx×u(x)

Applying the differentiation of trigonometric functions
color(blue)(d/dx(sinx)=cosx)ddx(sinx)=cosx
color(blue)(d/dx(cosx)=-sinx)ddx(cosx)=sinx

d/dx(xsiny+x^2cosy)=(d1)/dxddx(xsiny+x2cosy)=d1dx

rArrcolor(brown)(d/dx(xsiny)+d/dx(x^2cosy)=0)ddx(xsiny)+ddx(x2cosy)=0

rArrcolor(red)(((dx)/dxxxsiny+(dsiny)/dxxxx)+((dx^2)/dxxxcosy+(dcosy)/dxxxx^2)=0(dxdx×siny+dsinydx×x)+(dx2dx×cosy+dcosydx×x2)=0

rArrsiny+(dy/dx)(cosy)x+2xcosy-(dy)/dx(siny)x^2=0siny+(dydx)(cosy)x+2xcosydydx(siny)x2=0

rArr(dy/dx)(cosy)x-(dy)/dx(siny)x^2=-siny-2xcosy(dydx)(cosy)xdydx(siny)x2=siny2xcosy

rArr(dy/dx)((cosy)x-(siny)x^2)=-siny-2xcosy(dydx)((cosy)x(siny)x2)=siny2xcosy

rArr(dy)/(dx)=-(siny+2xcosy)/((cosy)x-(siny)x^2)dydx=siny+2xcosy(cosy)x(siny)x2