How do you use integration by parts to establish the reduction formula cosn(x)dx=(1n)cosn1(x)sin(x)+n1ncosn2(x)dx ?

1 Answer
Sep 11, 2014

Let
I=cosnxdx.

Let u=cosn1x and dv=cosxdx
du=(n1)cosn2xsinxdx and v=sinx

By Integration by Parts,
I=cosn1xsinx+(n1)cosn2xsin2xdx
By sin2x=1cos2x,
I=cosn1xsinx+(n1)cosn2x(1cos2x)dx
By splitting the last integral,
I=cosn1xsinx+(n1)cosn2xdx(n1)I
By adding (n1)I,
nI=cosn1xsinx+(n1)cosn2xdx
By dividing by n,
I=1ncosn1xsinx+n1ncosn2xdx