How do you use polynomial long division to divide #(5x^4-3x^3+2x^2-1)div(x^2+4)# and write the polynomial in the form #p(x)=d(x)q(x)+r(x)#?

1 Answer

The answer is #5x^4-3x^3+2x^2-1=(5x^2-3x-18)(x^2+4)+(12x+71)#

Explanation:

Let's perform the long division

#color(white)(aaaa)##5x^4-3x^3+2x^2##color(white)(aaaa)##-1##color(white)(aaaa)##|##x^2+4#

#color(white)(aaaa)5x^4color(white)(aaaaa)+20x^2color(white)(aaaaaaaaaaa)|5x^2-3x-18#

#color(white)(aaaaaa)##0-3x^3-18x^2#

#color(white)(aaaaaaaa)##-3x^3+##color(white)(aaa)##-12x#

#color(white)(aaaaaaaaaa)##+0-18x^2##color(white)(aa)##+12x-1#

#color(white)(aaaaaaaaaaaaa)##-18x^2##color(white)(aaaaaa)##-72#

#color(white)(aaaaaaaaaaaaaa)##+0+12x##color(white)(aaaaaa)##+71#

Therefore,

#5x^4-3x^3+2x^2-1=(5x^2-3x-18)(x^2+4)+(12x+71)#