How do you use polynomial long division to divide #(-x^5+7x^3-x)div(x^3-x^2+1)# and write the polynomial in the form #p(x)=d(x)q(x)+r(x)#?

1 Answer
Jul 9, 2018

Please see the explanation below

Explanation:

Perform the long division

#color(white)(aaaa)##-x^5+0x^4+7x^3+0x^2-x##color(white)(aaaa)##|##x^3-x^2+1#

#color(white)(aaaa)##-x^5+x^4+0x^3-x^2##color(white)(aaaaaaaaa)##|##-x^2-x#

#color(white)(aaaaaa)##0-x^4+7x^3+x^2-x#

#color(white)(aaaaaaaa)##-x^4+x^3+0x^2-x#

#color(white)(aaaaaaaaa)##-0+6x^3+x^2+0x#

Therefore,

#-x^5+0x^4+7x^3+0x^2-x=(x^3-x^2+1)(-x^2-x)+6x^3+x^2#

The remainder is #r(x)=+6x^3+x^2# and the quotient is #q(x)=-x^2-x#