How do you use substitution to integrate 2/(xsqrt(4lnx- (lnx)^2 ))2x4lnx(lnx)2?

1 Answer
Jul 23, 2015

The answer turned out to be 4arcsin(sqrt(lnx)/2) + C4arcsin(lnx2)+C. Just a note; Wolfram Alpha gives a much more complicated answer, and it's not particularly nice of a result when, for example, you are typing it in for an online homework problem.

Wolfram Alpha gives its alternative answer as:

= (4sqrt(lnx - 4)sqrt(lnx)ln(sqrt(lnx - 4) + sqrt(lnx)))/sqrt(-(lnx - 4)lnx)=4lnx4lnxln(lnx4+lnx)(lnx4)lnx

= (4sqrt(lnx - 4)sqrt(lnx)ln(sqrt(lnx - 4) + sqrt(lnx)))/sqrt(4lnx - ln^2x)=4lnx4lnxln(lnx4+lnx)4lnxln2x

which... let's face it, looks terrible! :)


I feel like trig substitution should be done somewhere here... Let's say for now...

Let:
u = lnxu=lnx
du = 1/xdxdu=1xdx

=> int 2/(xsqrt(4u - u^2))dx2x4uu2dx

= 2int 1/(sqrt(4u - u^2))du=214uu2du

Okay, so this looks a little better. What if we factored something out?

= 2int 1/(sqrtusqrt(4 - u))du=21u4udu

= 2int 1/(sqrtusqrt(2^2 - (sqrtu)^2))du=21u22(u)2du

Now, what if we said...
sqrtu = 2sinthetau=2sinθ
u = 4sin^2thetau=4sin2θ
du = 8sinthetacosthetad thetadu=8sinθcosθdθ
sqrt(4 - u) = sqrt(2^2 - 2^2sin^2theta) = 2costheta4u=2222sin2θ=2cosθ

More manageable now.

= 2int 1/(cancel(2)cancel(sintheta)cancel(2)cancel(costheta))*cancel(8)^2cancel(sinthetacostheta)d theta

= 4int d theta

Huh? How... easy?

= 4theta

Now, we had 2sintheta = sqrtu, so:

theta = arcsin((sqrtu)/2)

Thus:

theta = arcsin(sqrt(lnx)/2)

And so we have:

= color(blue)(4arcsin(sqrt(lnx)/2) + C)

That is our answer. It seems rather intuitive considering the resemblance of the original with 1/(sqrt(1-u^2)).

Let's try to differentiate this and see if we get back to the original.

(dy)/(dx)[arcsinu] = 1/sqrt(1-u^2)((du)/(dx))

Thus, with u = sqrt(lnx)/2, we have, after some Chain Rule action...

Cancel out terms:
4(d)/(dx)[arcsin(sqrt(lnx)/2)] = cancel(4)*1/(sqrt(1-((sqrtlnx)/2)^2))*1/cancel(2)*1/(cancel(2)sqrt(lnx))*1/x

Shift values around:
= 1/(xsqrt(lnx)sqrt(1-((sqrtlnx)/2)^2))

Multiply out the square:
= 1/(xsqrt(lnx)sqrt(1-(lnx)/4))

Distribute into the square root:
= 1/(xsqrt(lnx-(lnx)^2/4))

Factor sqrt(1/4) out:
= 1/(xsqrt(1/4)sqrt(4lnx-(lnx)^2))

Shift that around:
= sqrt4/(xsqrt(4lnx-(lnx)^2))

Done!
= color(green)(2/(xsqrt(4lnx-(lnx)^2)))