The answer turned out to be 4arcsin(sqrt(lnx)/2) + C4arcsin(√lnx2)+C. Just a note; Wolfram Alpha gives a much more complicated answer, and it's not particularly nice of a result when, for example, you are typing it in for an online homework problem.
Wolfram Alpha gives its alternative answer as:
= (4sqrt(lnx - 4)sqrt(lnx)ln(sqrt(lnx - 4) + sqrt(lnx)))/sqrt(-(lnx - 4)lnx)=4√lnx−4√lnxln(√lnx−4+√lnx)√−(lnx−4)lnx
= (4sqrt(lnx - 4)sqrt(lnx)ln(sqrt(lnx - 4) + sqrt(lnx)))/sqrt(4lnx - ln^2x)=4√lnx−4√lnxln(√lnx−4+√lnx)√4lnx−ln2x
which... let's face it, looks terrible! :)
I feel like trig substitution should be done somewhere here... Let's say for now...
Let:
u = lnxu=lnx
du = 1/xdxdu=1xdx
=> int 2/(xsqrt(4u - u^2))dx⇒∫2x√4u−u2dx
= 2int 1/(sqrt(4u - u^2))du=2∫1√4u−u2du
Okay, so this looks a little better. What if we factored something out?
= 2int 1/(sqrtusqrt(4 - u))du=2∫1√u√4−udu
= 2int 1/(sqrtusqrt(2^2 - (sqrtu)^2))du=2∫1√u√22−(√u)2du
Now, what if we said...
sqrtu = 2sintheta√u=2sinθ
u = 4sin^2thetau=4sin2θ
du = 8sinthetacosthetad thetadu=8sinθcosθdθ
sqrt(4 - u) = sqrt(2^2 - 2^2sin^2theta) = 2costheta√4−u=√22−22sin2θ=2cosθ
More manageable now.
= 2int 1/(cancel(2)cancel(sintheta)cancel(2)cancel(costheta))*cancel(8)^2cancel(sinthetacostheta)d theta
= 4int d theta
Huh? How... easy?
= 4theta
Now, we had 2sintheta = sqrtu, so:
theta = arcsin((sqrtu)/2)
Thus:
theta = arcsin(sqrt(lnx)/2)
And so we have:
= color(blue)(4arcsin(sqrt(lnx)/2) + C)
That is our answer. It seems rather intuitive considering the resemblance of the original with 1/(sqrt(1-u^2)).
Let's try to differentiate this and see if we get back to the original.
(dy)/(dx)[arcsinu] = 1/sqrt(1-u^2)((du)/(dx))
Thus, with u = sqrt(lnx)/2, we have, after some Chain Rule action...
Cancel out terms:
4(d)/(dx)[arcsin(sqrt(lnx)/2)] = cancel(4)*1/(sqrt(1-((sqrtlnx)/2)^2))*1/cancel(2)*1/(cancel(2)sqrt(lnx))*1/x
Shift values around:
= 1/(xsqrt(lnx)sqrt(1-((sqrtlnx)/2)^2))
Multiply out the square:
= 1/(xsqrt(lnx)sqrt(1-(lnx)/4))
Distribute into the square root:
= 1/(xsqrt(lnx-(lnx)^2/4))
Factor sqrt(1/4) out:
= 1/(xsqrt(1/4)sqrt(4lnx-(lnx)^2))
Shift that around:
= sqrt4/(xsqrt(4lnx-(lnx)^2))
Done!
= color(green)(2/(xsqrt(4lnx-(lnx)^2)))