How do you use substitution to integrate (2x+3)/(x+7)^3 ?

1 Answer
Jul 6, 2015

int (2x+3)/((x+7)^3)\ dx=(-17-4x)/(2(x+7)^2)+C

Explanation:

Let u=x+7 so that du=dx and x=u-7. Then \int (2x+3)/((x+7)^3)\ dx=int (2(u-7)+3)/u^3\ du=int (2u^{-2}-11u^{-3})\ du

=-2u^{-1}+(11/2)u^{-2}+C

=(-2u+11/2)/u^2+C

=(-4(x+7)+11)/(2(x+7)^2)+C=(-17-4x)/(2(x+7)^2)+C