How do you use substitution to integrate (4x^3)/( (x^2+1)^2)4x3(x2+1)2?

2 Answers
Mar 5, 2018

I tried this:

Explanation:

Have a look:
enter image source here

Mar 5, 2018

int (4x^3)/(x^2+1)^2dx = 2ln (1+x^2) +2/(1+x^2)+C4x3(x2+1)2dx=2ln(1+x2)+21+x2+C

Explanation:

Substitute x = tantx=tant, dx= sec^2tdx=sec2t

int (4x^3)/(x^2+1)^2dx = int (4tan^3tsec^2t)/(tan^2t+1)^2dt4x3(x2+1)2dx=4tan3tsec2t(tan2t+1)2dt

Use now the trigonometric identity:

1+tan^2t = sec^2t1+tan2t=sec2t

int (4x^3)/(x^2+1)^2dx = int (4tan^3tsec^2t)/sec^4tdt4x3(x2+1)2dx=4tan3tsec2tsec4tdt

int (4x^3)/(x^2+1)^2dx = int (4tan^3t)/sec^2tdt4x3(x2+1)2dx=4tan3tsec2tdt

int (4x^3)/(x^2+1)^2dx = int (4sin^3tcos^2)/cos^3tdt4x3(x2+1)2dx=4sin3tcos2cos3tdt

int (4x^3)/(x^2+1)^2dx = int (4sin^3t)/costdt4x3(x2+1)2dx=4sin3tcostdt

int (4x^3)/(x^2+1)^2dx = 4int ((1-cos^2t)sint)/costdt4x3(x2+1)2dx=4(1cos2t)sintcostdt

int (4x^3)/(x^2+1)^2dx = -4int (1/cost-cost) d(cost)4x3(x2+1)2dx=4(1costcost)d(cost)

int (4x^3)/(x^2+1)^2dx = -4ln abs (cost) +2 cos^2t + C4x3(x2+1)2dx=4ln|cost|+2cos2t+C

using the properties of logarithms:

int (4x^3)/(x^2+1)^2dx = 2ln (1/ cos^2t) +2 cos^2t + C4x3(x2+1)2dx=2ln(1cos2t)+2cos2t+C

To undo the substitution note that:

cos^2t = 1/sec^2t = 1/(1+tan^2t) = 1/(1+x^2)cos2t=1sec2t=11+tan2t=11+x2

int (4x^3)/(x^2+1)^2dx = 2ln (1+x^2) +2/(1+x^2)+C4x3(x2+1)2dx=2ln(1+x2)+21+x2+C