Substitute x = tantx=tant, dx= sec^2tdx=sec2t
int (4x^3)/(x^2+1)^2dx = int (4tan^3tsec^2t)/(tan^2t+1)^2dt∫4x3(x2+1)2dx=∫4tan3tsec2t(tan2t+1)2dt
Use now the trigonometric identity:
1+tan^2t = sec^2t1+tan2t=sec2t
int (4x^3)/(x^2+1)^2dx = int (4tan^3tsec^2t)/sec^4tdt∫4x3(x2+1)2dx=∫4tan3tsec2tsec4tdt
int (4x^3)/(x^2+1)^2dx = int (4tan^3t)/sec^2tdt∫4x3(x2+1)2dx=∫4tan3tsec2tdt
int (4x^3)/(x^2+1)^2dx = int (4sin^3tcos^2)/cos^3tdt∫4x3(x2+1)2dx=∫4sin3tcos2cos3tdt
int (4x^3)/(x^2+1)^2dx = int (4sin^3t)/costdt∫4x3(x2+1)2dx=∫4sin3tcostdt
int (4x^3)/(x^2+1)^2dx = 4int ((1-cos^2t)sint)/costdt∫4x3(x2+1)2dx=4∫(1−cos2t)sintcostdt
int (4x^3)/(x^2+1)^2dx = -4int (1/cost-cost) d(cost)∫4x3(x2+1)2dx=−4∫(1cost−cost)d(cost)
int (4x^3)/(x^2+1)^2dx = -4ln abs (cost) +2 cos^2t + C∫4x3(x2+1)2dx=−4ln|cost|+2cos2t+C
using the properties of logarithms:
int (4x^3)/(x^2+1)^2dx = 2ln (1/ cos^2t) +2 cos^2t + C∫4x3(x2+1)2dx=2ln(1cos2t)+2cos2t+C
To undo the substitution note that:
cos^2t = 1/sec^2t = 1/(1+tan^2t) = 1/(1+x^2)cos2t=1sec2t=11+tan2t=11+x2
int (4x^3)/(x^2+1)^2dx = 2ln (1+x^2) +2/(1+x^2)+C∫4x3(x2+1)2dx=2ln(1+x2)+21+x2+C