How do you use substitution to integrate sqrt(4-x^2) dx4x2dx?

1 Answer
Jun 23, 2015

This can be done from trig substitution. Notice how

sqrt(a^2 - x^2) prop sqrt(a^2 - a^2sin^2theta) prop sqrt(4 - x^2)a2x2a2a2sin2θ4x2
where a = 2a=2

so let:
x = 2sinthetax=2sinθ
dx = 2costhetad thetadx=2cosθdθ
sqrt(4-x^2) = 2costheta4x2=2cosθ

=> int 2costheta*2costhetad theta2cosθ2cosθdθ

= 4int cos^2thetad theta=4cos2θdθ

Now you can use the identity:
cos^2theta = (1+cos(2theta))/2cos2θ=1+cos(2θ)2

Thus:
= 2int d theta + 2int cos(2theta)d theta=2dθ+2cos(2θ)dθ

= 2int d theta + 2*1/2int 2cos(2theta)d theta=2dθ+2122cos(2θ)dθ

= 2theta + sin(2theta) + C=2θ+sin(2θ)+C

Since x = 2sinthetax=2sinθ, theta = arcsin(x/2)θ=arcsin(x2).
Since sin(2theta) = 2sinthetacosthetasin(2θ)=2sinθcosθ:

sin(2theta) = (xsqrt(4-x^2))/2sin(2θ)=x4x22

=> color(blue)(2arcsin(x/2) + (xsqrt(4-x^2))/2 + C)2arcsin(x2)+x4x22+C