This can be done from trig substitution. Notice how
sqrt(a^2 - x^2) prop sqrt(a^2 - a^2sin^2theta) prop sqrt(4 - x^2)√a2−x2∝√a2−a2sin2θ∝√4−x2
where a = 2a=2
so let:
x = 2sinthetax=2sinθ
dx = 2costhetad thetadx=2cosθdθ
sqrt(4-x^2) = 2costheta√4−x2=2cosθ
=> int 2costheta*2costhetad theta⇒∫2cosθ⋅2cosθdθ
= 4int cos^2thetad theta=4∫cos2θdθ
Now you can use the identity:
cos^2theta = (1+cos(2theta))/2cos2θ=1+cos(2θ)2
Thus:
= 2int d theta + 2int cos(2theta)d theta=2∫dθ+2∫cos(2θ)dθ
= 2int d theta + 2*1/2int 2cos(2theta)d theta=2∫dθ+2⋅12∫2cos(2θ)dθ
= 2theta + sin(2theta) + C=2θ+sin(2θ)+C
Since x = 2sinthetax=2sinθ, theta = arcsin(x/2)θ=arcsin(x2).
Since sin(2theta) = 2sinthetacosthetasin(2θ)=2sinθcosθ:
sin(2theta) = (xsqrt(4-x^2))/2sin(2θ)=x√4−x22
=> color(blue)(2arcsin(x/2) + (xsqrt(4-x^2))/2 + C)⇒2arcsin(x2)+x√4−x22+C