Let u=1-xu=1−x so that du = -dxdu=−dx and x=1-ux=1−u. Then
\int x(1-x)^n\ dx=\int (u-1)u^{n}\ du=\int (u^{n+1}-u^{n})\ du
=\frac{u^{n+2}}{n+2}-\frac{u^{n+1}}{n+1}+C
=\frac{(1-x)^{n+2}}{n+2}-\frac{(1-x)^{n+1}}{n+1}+C
when n!=-1 and n!=-2.
When n=-1, we get:
\int \frac{x}{1-x}\ dx=\int (\frac{1}{1-x}-1)\ dx=-\ln|1-x|-x+C
When n=-2, we get:
\int \frac{x}{(1-x)^2}\ dx
=\int (-\frac{1}{1-x}+\frac{1}{(1-x)^2})\ dx=\ln|1-x|+1/(1-x)+C