How do you use substitution to integrate (x^2)(sinx^3) (x2)(sinx3)?

1 Answer
Jul 27, 2015

int (x^2)(sinx^3) dx = -1/3cosx^3 +C(x2)(sinx3)dx=13cosx3+C

Explanation:

int (x^2)(sinx^3) dx(x2)(sinx3)dx

Let u = x^3u=x3 so that du = 3x^2 dxdu=3x2dx

Out integral becomes:

1/3 int (sinx^3) 3x^2dx = 1/3 int sin u du13(sinx3)3x2dx=13sinudu

= 1/3 (-cosu) +C=13(cosu)+C

= -1/3cosx^3 +C=13cosx3+C

Check the answer by differentiating:

d/dx(-1/3cosx^3 +C) = -1/3* -sin(x^3) * 3x^2ddx(13cosx3+C)=13sin(x3)3x2

= sin(x^3)* x^2=sin(x3)x2

Looks good, so that's it.