You can rewrite this carefully.
= intx^2sqrt((2sqrtx)^2 + 3^2)dx
Now it looks like sqrt(a^2 + x^2), which resembles sqrt(1 + tan^2theta).
Let:
2sqrtx = 3tantheta
x = (9tan^2theta)/4
x^2 = (81tan^4theta)/16
sqrt((2sqrtx)^2 + 3^2) = sqrt(9tan^2theta + 9) = 3sectheta
dx = 9/4*2tanthetasec^2thetad theta = 9/2tanthetasec^2thetad theta
=> int(81tan^4theta)/16 3sectheta 9/2tanthetasec^2thetad theta
= 2187/32inttan^5thetasec^3thetad theta
Notice how that constant is irreducible... Ugh. It looks a bit crazy, but it's just large numbers. Using some identities:
= 2187/32int(sec^2theta - 1)^2sec^2thetasecthetatanthetad theta
And some u-substitution. Let:
u = sectheta
du = secthetatanthetad theta
= 2187/32int(u^2 - 1)^2u^2du
= 2187/32int(u^4 - 2u^2 + 1)u^2du
= 2187/32intu^6 - 2u^4 + u^2du
= 2187/32 (u^7/7 - 2/5u^5 + u^3/3)
= 2187/32 (sec^7theta/7 - 2/5sec^5theta + sec^3theta/3)
Draw a right triangle if you want. Since tantheta = (2sqrtx)/3, and sqrt((2sqrtx)^2 + 3^2) = sqrt(4x + 9), sectheta = sqrt(4x+9)/3:
= 2187/32 ((4x+9)^(7/2)/(7*3^7) - 2/(5*3^5)(4x+9)^(5/2) + (4x+9)^(3/2)/(3*3^3))
= 2187/32 ((4x+9)^(7/2)/(15309) - 2/(1215)(4x+9)^(5/2) + (4x+9)^(3/2)/(81))
= 1/32 ((4x+9)^(7/2)/(7) - 18/(5)(4x+9)^(5/2) + 27(4x+9)^(3/2))
= 1/32(4x+9)^(3/2)[(4x+9)^(2)/7 - 18/5(4x+9) + 27] + C
Now let's figure out how to make this look nicer. Get some common denominators, subtract in the numerator, and factor out 8/35:
= 1/32(4x+9)^(3/2)[(16x^2 + 72x + 81)/7 - 72/5x - 162/5 + 27]
= 1/32(4x+9)^(3/2)[(80x^2 + 360x + 405 - 504x - 1134 + 945)/35]
= 1/32(4x+9)^(3/2)[(80x^2 - 144x + 216)/35]
= (1*8)/(32*35)(4x+9)^(3/2)[10x^2 - 18x + 27]
= 1/140(4x+9)^("3/2")[10x^2 - 18x + 27] + C