If I rewrite this as:
x^2 sqrt((x^2)^2 + (sqrt5)^2) prop u sqrt(u^2 + a^2x2√(x2)2+(√5)2∝u√u2+a2
then you can do the trig substitution method of letting:
x^2 = sqrt5tanthetax2=√5tanθ
sqrt(x^4 + 5) = sqrt5sec^2theta√x4+5=√5sec2θ
x = 5^(1/4)sqrttanthetax=514√tanθ
dx = 5^(1/4)*1/(2sqrttantheta)sec^2thetad theta = 5^(1/4)/2sec^2theta/(sqrttantheta)d thetadx=514⋅12√tanθsec2θdθ=5142sec2θ√tanθdθ
= int sqrt5tantheta sqrt5sec^2theta 5^(1/4)/2sec^2theta/(sqrttantheta)d theta=∫√5tanθ√5sec2θ5142sec2θ√tanθdθ
= 5^(5/4)/2int (tantheta)^(1/2) sec^4thetad theta=5542∫(tanθ)12sec4θdθ
= 5^(5/4)/2int (tantheta)^(1/2) (tan^2theta + 1)sec^2thetad theta=5542∫(tanθ)12(tan2θ+1)sec2θdθ
since 1+tan^2theta = sec^2theta1+tan2θ=sec2θ.
Then just do some u-substitution with u = tanthetau=tanθ and du = sec^2thetad thetadu=sec2θdθ and you'll just have some polynomials to work with, integrate that, substitute back in previous variables, add +C+C.
I think you can do it from there (I'm in a hurry. If someone wants to finish this, go ahead).