How do you use substitution to integrate x^2sqrt(x^(4)+5)x2x4+5?

1 Answer
Jul 2, 2015

If I rewrite this as:

x^2 sqrt((x^2)^2 + (sqrt5)^2) prop u sqrt(u^2 + a^2x2(x2)2+(5)2uu2+a2

then you can do the trig substitution method of letting:
x^2 = sqrt5tanthetax2=5tanθ
sqrt(x^4 + 5) = sqrt5sec^2thetax4+5=5sec2θ
x = 5^(1/4)sqrttanthetax=514tanθ
dx = 5^(1/4)*1/(2sqrttantheta)sec^2thetad theta = 5^(1/4)/2sec^2theta/(sqrttantheta)d thetadx=51412tanθsec2θdθ=5142sec2θtanθdθ

= int sqrt5tantheta sqrt5sec^2theta 5^(1/4)/2sec^2theta/(sqrttantheta)d theta=5tanθ5sec2θ5142sec2θtanθdθ

= 5^(5/4)/2int (tantheta)^(1/2) sec^4thetad theta=5542(tanθ)12sec4θdθ

= 5^(5/4)/2int (tantheta)^(1/2) (tan^2theta + 1)sec^2thetad theta=5542(tanθ)12(tan2θ+1)sec2θdθ

since 1+tan^2theta = sec^2theta1+tan2θ=sec2θ.

Then just do some u-substitution with u = tanthetau=tanθ and du = sec^2thetad thetadu=sec2θdθ and you'll just have some polynomials to work with, integrate that, substitute back in previous variables, add +C+C.

I think you can do it from there (I'm in a hurry. If someone wants to finish this, go ahead).