Set u=2x-1=>x=(u+1)/2u=2x−1⇒x=u+12 hence du=2dxdu=2dx so now we have
int xsqrt(2x-1)dx=int (u+1)/2*sqrtu*(du)/2=1/4 int (usqrtu+sqrtu)du=
1/4*2/15*u^(3/2)*(3u+5)+c=1/15*(2x-1)^(3/2)*(3x+1)+c∫x√2x−1dx=∫u+12⋅√u⋅du2=14∫(u√u+√u)du=14⋅215⋅u32⋅(3u+5)+c=115⋅(2x−1)32⋅(3x+1)+c