How do you use substitution to integrate xsqrt(2x-1)x2x1?

1 Answer

Set u=2x-1=>x=(u+1)/2u=2x1x=u+12 hence du=2dxdu=2dx so now we have

int xsqrt(2x-1)dx=int (u+1)/2*sqrtu*(du)/2=1/4 int (usqrtu+sqrtu)du= 1/4*2/15*u^(3/2)*(3u+5)+c=1/15*(2x-1)^(3/2)*(3x+1)+cx2x1dx=u+12udu2=14(uu+u)du=14215u32(3u+5)+c=115(2x1)32(3x+1)+c