According to Remainder theorem, if a polynomial f(x) is divided by a monomial of degree one say x-a, the remainder is f(a).
Hence, to evaluate f(2) for x^3+2x^2-4x-5, we should divided it by x-2
One Write the coefficients of x in the dividend inside an upside-down division symbol.
color(white)(1)|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(X)
" "stackrel("—————————————)
Two Put the divisor at the left.
2|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(X)
" "stackrel("—————————————)
Three Drop the first coefficient of the dividend below the division symbol.
2|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(X)
" "stackrel("—————————————)
color(white)(1)|color(white)(X)color(red)1
Four Multiply the result by the constant, and put the product in the next column.
2|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(XX1)2
" "stackrel("—————————————)
color(white)(1)|color(white)(X)color(blue)1
Five Add down the column.
2|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(XX1)2
" "stackrel("—————————————)
color(white)(1)|color(white)(X)color(blue)1color(white)(X11)color(red)4
Six Repeat Steps Four and Five until you can go no farther.
2|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(XX1)2color(white)(XXXX)8color(white)(XXxx)8
" "stackrel("—————————————)
color(white)(1)|color(white)(X)color(blue)1color(white)(X11)color(red)4color(white)(XXXx)color(red)4color(white)(XXXX)color(red)3
Remainder is 3. Hence f(2)=3