How do you use synthetic substitution to evaluate f(2) for f(x)=x^3+2x^2-4x-5?

2 Answers
Nov 4, 2016

f(2)=3

Explanation:

f(x)=x^3+2x^2-4x-5
When the problem asks to evaluate f(2), simply substitute in 2 for every time you see "x" in the function. So we have:
f(2)=(2)^3+2(2)^2-4(2)-5
Now we simplify each term:
f(2)=8+2(4)-8-5
f(2)=8+8-8-5
f(2)=3

Nov 4, 2016

f(2)=3

Explanation:

According to Remainder theorem, if a polynomial f(x) is divided by a monomial of degree one say x-a, the remainder is f(a).

Hence, to evaluate f(2) for x^3+2x^2-4x-5, we should divided it by x-2

One Write the coefficients of x in the dividend inside an upside-down division symbol.

color(white)(1)|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(X)
" "stackrel("—————————————)

Two Put the divisor at the left.

2|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(X)
" "stackrel("—————————————)

Three Drop the first coefficient of the dividend below the division symbol.

2|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(X)
" "stackrel("—————————————)
color(white)(1)|color(white)(X)color(red)1

Four Multiply the result by the constant, and put the product in the next column.

2|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(XX1)2
" "stackrel("—————————————)
color(white)(1)|color(white)(X)color(blue)1

Five Add down the column.

2|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(XX1)2
" "stackrel("—————————————)
color(white)(1)|color(white)(X)color(blue)1color(white)(X11)color(red)4

Six Repeat Steps Four and Five until you can go no farther.

2|color(white)(X)1" "color(white)(X)2color(white)(XX)-4" "" "-5
color(white)(1)|" "color(white)(XX1)2color(white)(XXXX)8color(white)(XXxx)8
" "stackrel("—————————————)
color(white)(1)|color(white)(X)color(blue)1color(white)(X11)color(red)4color(white)(XXXx)color(red)4color(white)(XXXX)color(red)3

Remainder is 3. Hence f(2)=3