How do you use the angle sum identity to find the exact value of #sin285#?

1 Answer
Oct 25, 2016

#- sqrt(2 + sqrt3)/2#

Explanation:

Trig unit circle -->
sin 285 = sin (-75 + 360) = sin (-75)
Property of complementary arcs -->
sin (-75) = sin (-15 + 90) = - cos 15
Next, find (cos 15) by using trig identity:
#2cos^2 a = 1 + cos 2a#
#2cos^2 (15) = 1 + cos 30 = 1 + sqrt3/2 = (2 + sqrt3)/2#
#cos^2 15 = (2 + sqrt3)/4#
#cos 15 = +- sqrt(2 + sqrt3)/2#
Since cos 15 is positive then take the positive value only.
Finally:
sin 285 = - cos 15 = #- sqrt(2 + sqrt3)/2#
Check by calculator:
sin 285 = - 0.965
#- sqrt(2 + sqrt3)/2 = 1.93/2 = -0.965.# OK