How do you use the chain rule to differentiate #f(x)=cos(2x^2+3x-sinx)#? Calculus Basic Differentiation Rules Chain Rule 1 Answer sjc Jan 27, 2018 #f'(x)=-(4x+3-cosx)sin(2x^2+3x-sinx)# Explanation: the chain rule #(dy)/(dx)=color(red)((dy)/(du))xxcolor(blue)((du)/(dx)# let#" "y=f(x)=cos(2x^2+3x-sinx)# #color(blue)(u=2x^2+3x-sinx=>(du)/(dx)=4x+3-cosx)# #:.color(red)(y=cosu=>(dy)/(du)=-sinu).# #f'(x)=(dy)/(dx)=color(red)((-sinu))xxcolor(blue)((4x+3-cosx)# #f'(x)=-(4x+3-cosx)sin(2x^2+3x-sinx)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1204 views around the world You can reuse this answer Creative Commons License