How do you use the chain rule to differentiate #y=(-x^4-3)^-2#? Calculus Basic Differentiation Rules Chain Rule 1 Answer Tazwar Sikder Jun 3, 2017 #y' = 8 x^(3) (- x^(4) - 3)^(- 3)# Explanation: We have: #y = (- x^(4) - 3)^(- 2)# Let #u = - x^(4) - 3 Rightarrow u' = - 4 x^(3)# and #v = u^(- 2) Rightarrow v' = - 2 u^(- 3)#: #Rightarrow y' = u' cdot v'# #Rightarrow y' = (- 4 x^(3)) cdot (- 2 u^(- 3))# #Rightarrow y' = 8 x^(3) u^(- 3)# Let's replace #u# with #- x^(4) - 3#: #Rightarrow y' = 8 x^(3) (- x^(4) - 3)^(- 3)# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1327 views around the world You can reuse this answer Creative Commons License