How do you use the difference of two squares formula to factor #2x^2 − 18#?

2 Answers
May 6, 2015

You know that #a^2-b^2=(a+b)(a-b)#
In your case
#(2x^2-18)=(xsqrt(2)+sqrt(18))(xsqrt(2)-sqrt(18))=#
#=(xsqrt(2)+sqrt(9*2))(xsqrt(2)-sqrt(9*2))=#
#=(xsqrt(2)+3sqrt(2))(xsqrt(2)-3sqrt(2))=#
#=sqrt(2)(x+3)sqrt(2)(x-3)=2(x+3)(x-3)#

May 6, 2015

To factor using integers, we may first remove the common factor of #2#. That will leave a difference of perfect squares.

#2x^2-18=2(x^2-9)=2(x^2-3^2)#

#=2(x+3)(x-3)#