How do you use the difference of two squares formula to factor 2x^2 − 182x218?

2 Answers
May 6, 2015

You know that a^2-b^2=(a+b)(a-b)a2b2=(a+b)(ab)
In your case
(2x^2-18)=(xsqrt(2)+sqrt(18))(xsqrt(2)-sqrt(18))=(2x218)=(x2+18)(x218)=
=(xsqrt(2)+sqrt(9*2))(xsqrt(2)-sqrt(9*2))==(x2+92)(x292)=
=(xsqrt(2)+3sqrt(2))(xsqrt(2)-3sqrt(2))==(x2+32)(x232)=
=sqrt(2)(x+3)sqrt(2)(x-3)=2(x+3)(x-3)=2(x+3)2(x3)=2(x+3)(x3)

May 6, 2015

To factor using integers, we may first remove the common factor of 22. That will leave a difference of perfect squares.

2x^2-18=2(x^2-9)=2(x^2-3^2)2x218=2(x29)=2(x232)

=2(x+3)(x-3)=2(x+3)(x3)