How do you use the double angle formula to verify #tan^2x=(1-cos2x)/(1+cos2x)#? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Narad T. Jan 12, 2017 See proof below Explanation: #tanx=sinx/cosx# #cos2x=1-2sin^2x# #cos2x=2cos^2x-1# #RHS=(1-cos2x)/(1+cos2x)# #=(1-(1-2sin^2x))/(1+(2cos^2x-1))# #=(1-1+2sin^2x)/((1+2cos^2x-1))# #=(2sin^2x)/(2cos^2x)# #=tan^2x# #=LHS# #QED# Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for #sin 2x = cos x# for the interval #[0,2pi]#? How do you find all solutions for #4sinthetacostheta=sqrt(3)# for the interval #[0,2pi]#? How do you simplify #cosx(2sinx + cosx)-sin^2x#? If #tan x = 0.3#, then how do you find tan 2x? If #sin x= 5/3#, what is the sin 2x equal to? How do you prove #cos2A = 2cos^2 A - 1#? See all questions in Double Angle Identities Impact of this question 19431 views around the world You can reuse this answer Creative Commons License