How do you use the double angle or half angle formulas to find the exact value of cos2x, when sinx=(sqrt 5)/3sinx=53 and pi/2 <= x <= piπ2xπ?

1 Answer
Oct 18, 2015

Find cos 2x knowing sin x = sqrt5/3sinx=53

Ans: cos 2x = -0.11

Explanation:

Apply the trig identity: cos 2x = 1 - 2sin^2 xcos2x=12sin2x. We get:

cos 2x = 1 - 2(5/9) = (9 - 10)/9 = -1/9 = - 0.11cos2x=12(59)=9109=19=0.11

Check by calculator.
sin x = sqrt5/3 = 2.24/3 = 0.745sinx=53=2.243=0.745 --> arc x = 48^@16x=4816 -->
--> 2x = 96^@322x=9632 --> cos 2x = - 0.11 = -1/9cos2x=0.11=19. OK